230 lines
11 KiB
JavaScript
230 lines
11 KiB
JavaScript
|
"use strict";
|
|||
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|||
|
exports.scrypt = scrypt;
|
|||
|
exports.scryptAsync = scryptAsync;
|
|||
|
const _assert_js_1 = require("./_assert.js");
|
|||
|
const sha256_js_1 = require("./sha256.js");
|
|||
|
const pbkdf2_js_1 = require("./pbkdf2.js");
|
|||
|
const utils_js_1 = require("./utils.js");
|
|||
|
// RFC 7914 Scrypt KDF
|
|||
|
// The main Scrypt loop: uses Salsa extensively.
|
|||
|
// Six versions of the function were tried, this is the fastest one.
|
|||
|
// prettier-ignore
|
|||
|
function XorAndSalsa(prev, pi, input, ii, out, oi) {
|
|||
|
// Based on https://cr.yp.to/salsa20.html
|
|||
|
// Xor blocks
|
|||
|
let y00 = prev[pi++] ^ input[ii++], y01 = prev[pi++] ^ input[ii++];
|
|||
|
let y02 = prev[pi++] ^ input[ii++], y03 = prev[pi++] ^ input[ii++];
|
|||
|
let y04 = prev[pi++] ^ input[ii++], y05 = prev[pi++] ^ input[ii++];
|
|||
|
let y06 = prev[pi++] ^ input[ii++], y07 = prev[pi++] ^ input[ii++];
|
|||
|
let y08 = prev[pi++] ^ input[ii++], y09 = prev[pi++] ^ input[ii++];
|
|||
|
let y10 = prev[pi++] ^ input[ii++], y11 = prev[pi++] ^ input[ii++];
|
|||
|
let y12 = prev[pi++] ^ input[ii++], y13 = prev[pi++] ^ input[ii++];
|
|||
|
let y14 = prev[pi++] ^ input[ii++], y15 = prev[pi++] ^ input[ii++];
|
|||
|
// Save state to temporary variables (salsa)
|
|||
|
let x00 = y00, x01 = y01, x02 = y02, x03 = y03, x04 = y04, x05 = y05, x06 = y06, x07 = y07, x08 = y08, x09 = y09, x10 = y10, x11 = y11, x12 = y12, x13 = y13, x14 = y14, x15 = y15;
|
|||
|
// Main loop (salsa)
|
|||
|
for (let i = 0; i < 8; i += 2) {
|
|||
|
x04 ^= (0, utils_js_1.rotl)(x00 + x12 | 0, 7);
|
|||
|
x08 ^= (0, utils_js_1.rotl)(x04 + x00 | 0, 9);
|
|||
|
x12 ^= (0, utils_js_1.rotl)(x08 + x04 | 0, 13);
|
|||
|
x00 ^= (0, utils_js_1.rotl)(x12 + x08 | 0, 18);
|
|||
|
x09 ^= (0, utils_js_1.rotl)(x05 + x01 | 0, 7);
|
|||
|
x13 ^= (0, utils_js_1.rotl)(x09 + x05 | 0, 9);
|
|||
|
x01 ^= (0, utils_js_1.rotl)(x13 + x09 | 0, 13);
|
|||
|
x05 ^= (0, utils_js_1.rotl)(x01 + x13 | 0, 18);
|
|||
|
x14 ^= (0, utils_js_1.rotl)(x10 + x06 | 0, 7);
|
|||
|
x02 ^= (0, utils_js_1.rotl)(x14 + x10 | 0, 9);
|
|||
|
x06 ^= (0, utils_js_1.rotl)(x02 + x14 | 0, 13);
|
|||
|
x10 ^= (0, utils_js_1.rotl)(x06 + x02 | 0, 18);
|
|||
|
x03 ^= (0, utils_js_1.rotl)(x15 + x11 | 0, 7);
|
|||
|
x07 ^= (0, utils_js_1.rotl)(x03 + x15 | 0, 9);
|
|||
|
x11 ^= (0, utils_js_1.rotl)(x07 + x03 | 0, 13);
|
|||
|
x15 ^= (0, utils_js_1.rotl)(x11 + x07 | 0, 18);
|
|||
|
x01 ^= (0, utils_js_1.rotl)(x00 + x03 | 0, 7);
|
|||
|
x02 ^= (0, utils_js_1.rotl)(x01 + x00 | 0, 9);
|
|||
|
x03 ^= (0, utils_js_1.rotl)(x02 + x01 | 0, 13);
|
|||
|
x00 ^= (0, utils_js_1.rotl)(x03 + x02 | 0, 18);
|
|||
|
x06 ^= (0, utils_js_1.rotl)(x05 + x04 | 0, 7);
|
|||
|
x07 ^= (0, utils_js_1.rotl)(x06 + x05 | 0, 9);
|
|||
|
x04 ^= (0, utils_js_1.rotl)(x07 + x06 | 0, 13);
|
|||
|
x05 ^= (0, utils_js_1.rotl)(x04 + x07 | 0, 18);
|
|||
|
x11 ^= (0, utils_js_1.rotl)(x10 + x09 | 0, 7);
|
|||
|
x08 ^= (0, utils_js_1.rotl)(x11 + x10 | 0, 9);
|
|||
|
x09 ^= (0, utils_js_1.rotl)(x08 + x11 | 0, 13);
|
|||
|
x10 ^= (0, utils_js_1.rotl)(x09 + x08 | 0, 18);
|
|||
|
x12 ^= (0, utils_js_1.rotl)(x15 + x14 | 0, 7);
|
|||
|
x13 ^= (0, utils_js_1.rotl)(x12 + x15 | 0, 9);
|
|||
|
x14 ^= (0, utils_js_1.rotl)(x13 + x12 | 0, 13);
|
|||
|
x15 ^= (0, utils_js_1.rotl)(x14 + x13 | 0, 18);
|
|||
|
}
|
|||
|
// Write output (salsa)
|
|||
|
out[oi++] = (y00 + x00) | 0;
|
|||
|
out[oi++] = (y01 + x01) | 0;
|
|||
|
out[oi++] = (y02 + x02) | 0;
|
|||
|
out[oi++] = (y03 + x03) | 0;
|
|||
|
out[oi++] = (y04 + x04) | 0;
|
|||
|
out[oi++] = (y05 + x05) | 0;
|
|||
|
out[oi++] = (y06 + x06) | 0;
|
|||
|
out[oi++] = (y07 + x07) | 0;
|
|||
|
out[oi++] = (y08 + x08) | 0;
|
|||
|
out[oi++] = (y09 + x09) | 0;
|
|||
|
out[oi++] = (y10 + x10) | 0;
|
|||
|
out[oi++] = (y11 + x11) | 0;
|
|||
|
out[oi++] = (y12 + x12) | 0;
|
|||
|
out[oi++] = (y13 + x13) | 0;
|
|||
|
out[oi++] = (y14 + x14) | 0;
|
|||
|
out[oi++] = (y15 + x15) | 0;
|
|||
|
}
|
|||
|
function BlockMix(input, ii, out, oi, r) {
|
|||
|
// The block B is r 128-byte chunks (which is equivalent of 2r 64-byte chunks)
|
|||
|
let head = oi + 0;
|
|||
|
let tail = oi + 16 * r;
|
|||
|
for (let i = 0; i < 16; i++)
|
|||
|
out[tail + i] = input[ii + (2 * r - 1) * 16 + i]; // X ← B[2r−1]
|
|||
|
for (let i = 0; i < r; i++, head += 16, ii += 16) {
|
|||
|
// We write odd & even Yi at same time. Even: 0bXXXXX0 Odd: 0bXXXXX1
|
|||
|
XorAndSalsa(out, tail, input, ii, out, head); // head[i] = Salsa(blockIn[2*i] ^ tail[i-1])
|
|||
|
if (i > 0)
|
|||
|
tail += 16; // First iteration overwrites tmp value in tail
|
|||
|
XorAndSalsa(out, head, input, (ii += 16), out, tail); // tail[i] = Salsa(blockIn[2*i+1] ^ head[i])
|
|||
|
}
|
|||
|
}
|
|||
|
// Common prologue and epilogue for sync/async functions
|
|||
|
function scryptInit(password, salt, _opts) {
|
|||
|
// Maxmem - 1GB+1KB by default
|
|||
|
const opts = (0, utils_js_1.checkOpts)({
|
|||
|
dkLen: 32,
|
|||
|
asyncTick: 10,
|
|||
|
maxmem: 1024 ** 3 + 1024,
|
|||
|
}, _opts);
|
|||
|
const { N, r, p, dkLen, asyncTick, maxmem, onProgress } = opts;
|
|||
|
(0, _assert_js_1.number)(N);
|
|||
|
(0, _assert_js_1.number)(r);
|
|||
|
(0, _assert_js_1.number)(p);
|
|||
|
(0, _assert_js_1.number)(dkLen);
|
|||
|
(0, _assert_js_1.number)(asyncTick);
|
|||
|
(0, _assert_js_1.number)(maxmem);
|
|||
|
if (onProgress !== undefined && typeof onProgress !== 'function')
|
|||
|
throw new Error('progressCb should be function');
|
|||
|
const blockSize = 128 * r;
|
|||
|
const blockSize32 = blockSize / 4;
|
|||
|
// Max N is 2^32 (Integrify is 32-bit). Real limit is 2^22: JS engines Uint8Array limit is 4GB in 2024.
|
|||
|
// Spec check `N >= 2 ** (blockSize / 8)` is not done for compat with popular libs,
|
|||
|
// which used incorrect r: 1, p: 8. Also, the check seems to be a spec error:
|
|||
|
// https://www.rfc-editor.org/errata_search.php?rfc=7914
|
|||
|
if (N <= 1 || (N & (N - 1)) !== 0 || N > 2 ** 32) {
|
|||
|
throw new Error('Scrypt: N must be larger than 1, a power of 2, and less than 2^32');
|
|||
|
}
|
|||
|
if (p < 0 || p > ((2 ** 32 - 1) * 32) / blockSize) {
|
|||
|
throw new Error('Scrypt: p must be a positive integer less than or equal to ((2^32 - 1) * 32) / (128 * r)');
|
|||
|
}
|
|||
|
if (dkLen < 0 || dkLen > (2 ** 32 - 1) * 32) {
|
|||
|
throw new Error('Scrypt: dkLen should be positive integer less than or equal to (2^32 - 1) * 32');
|
|||
|
}
|
|||
|
const memUsed = blockSize * (N + p);
|
|||
|
if (memUsed > maxmem) {
|
|||
|
throw new Error(`Scrypt: parameters too large, ${memUsed} (128 * r * (N + p)) > ${maxmem} (maxmem)`);
|
|||
|
}
|
|||
|
// [B0...Bp−1] ← PBKDF2HMAC-SHA256(Passphrase, Salt, 1, blockSize*ParallelizationFactor)
|
|||
|
// Since it has only one iteration there is no reason to use async variant
|
|||
|
const B = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, salt, { c: 1, dkLen: blockSize * p });
|
|||
|
const B32 = (0, utils_js_1.u32)(B);
|
|||
|
// Re-used between parallel iterations. Array(iterations) of B
|
|||
|
const V = (0, utils_js_1.u32)(new Uint8Array(blockSize * N));
|
|||
|
const tmp = (0, utils_js_1.u32)(new Uint8Array(blockSize));
|
|||
|
let blockMixCb = () => { };
|
|||
|
if (onProgress) {
|
|||
|
const totalBlockMix = 2 * N * p;
|
|||
|
// Invoke callback if progress changes from 10.01 to 10.02
|
|||
|
// Allows to draw smooth progress bar on up to 8K screen
|
|||
|
const callbackPer = Math.max(Math.floor(totalBlockMix / 10000), 1);
|
|||
|
let blockMixCnt = 0;
|
|||
|
blockMixCb = () => {
|
|||
|
blockMixCnt++;
|
|||
|
if (onProgress && (!(blockMixCnt % callbackPer) || blockMixCnt === totalBlockMix))
|
|||
|
onProgress(blockMixCnt / totalBlockMix);
|
|||
|
};
|
|||
|
}
|
|||
|
return { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick };
|
|||
|
}
|
|||
|
function scryptOutput(password, dkLen, B, V, tmp) {
|
|||
|
const res = (0, pbkdf2_js_1.pbkdf2)(sha256_js_1.sha256, password, B, { c: 1, dkLen });
|
|||
|
B.fill(0);
|
|||
|
V.fill(0);
|
|||
|
tmp.fill(0);
|
|||
|
return res;
|
|||
|
}
|
|||
|
/**
|
|||
|
* Scrypt KDF from RFC 7914.
|
|||
|
* @param password - pass
|
|||
|
* @param salt - salt
|
|||
|
* @param opts - parameters
|
|||
|
* - `N` is cpu/mem work factor (power of 2 e.g. 2**18)
|
|||
|
* - `r` is block size (8 is common), fine-tunes sequential memory read size and performance
|
|||
|
* - `p` is parallelization factor (1 is common)
|
|||
|
* - `dkLen` is output key length in bytes e.g. 32.
|
|||
|
* - `asyncTick` - (default: 10) max time in ms for which async function can block execution
|
|||
|
* - `maxmem` - (default: `1024 ** 3 + 1024` aka 1GB+1KB). A limit that the app could use for scrypt
|
|||
|
* - `onProgress` - callback function that would be executed for progress report
|
|||
|
* @returns Derived key
|
|||
|
*/
|
|||
|
function scrypt(password, salt, opts) {
|
|||
|
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb } = scryptInit(password, salt, opts);
|
|||
|
if (!utils_js_1.isLE)
|
|||
|
(0, utils_js_1.byteSwap32)(B32);
|
|||
|
for (let pi = 0; pi < p; pi++) {
|
|||
|
const Pi = blockSize32 * pi;
|
|||
|
for (let i = 0; i < blockSize32; i++)
|
|||
|
V[i] = B32[Pi + i]; // V[0] = B[i]
|
|||
|
for (let i = 0, pos = 0; i < N - 1; i++) {
|
|||
|
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
|
|||
|
blockMixCb();
|
|||
|
}
|
|||
|
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
|
|||
|
blockMixCb();
|
|||
|
for (let i = 0; i < N; i++) {
|
|||
|
// First u32 of the last 64-byte block (u32 is LE)
|
|||
|
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
|
|||
|
for (let k = 0; k < blockSize32; k++)
|
|||
|
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
|
|||
|
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
|
|||
|
blockMixCb();
|
|||
|
}
|
|||
|
}
|
|||
|
if (!utils_js_1.isLE)
|
|||
|
(0, utils_js_1.byteSwap32)(B32);
|
|||
|
return scryptOutput(password, dkLen, B, V, tmp);
|
|||
|
}
|
|||
|
/**
|
|||
|
* Scrypt KDF from RFC 7914.
|
|||
|
*/
|
|||
|
async function scryptAsync(password, salt, opts) {
|
|||
|
const { N, r, p, dkLen, blockSize32, V, B32, B, tmp, blockMixCb, asyncTick } = scryptInit(password, salt, opts);
|
|||
|
if (!utils_js_1.isLE)
|
|||
|
(0, utils_js_1.byteSwap32)(B32);
|
|||
|
for (let pi = 0; pi < p; pi++) {
|
|||
|
const Pi = blockSize32 * pi;
|
|||
|
for (let i = 0; i < blockSize32; i++)
|
|||
|
V[i] = B32[Pi + i]; // V[0] = B[i]
|
|||
|
let pos = 0;
|
|||
|
await (0, utils_js_1.asyncLoop)(N - 1, asyncTick, () => {
|
|||
|
BlockMix(V, pos, V, (pos += blockSize32), r); // V[i] = BlockMix(V[i-1]);
|
|||
|
blockMixCb();
|
|||
|
});
|
|||
|
BlockMix(V, (N - 1) * blockSize32, B32, Pi, r); // Process last element
|
|||
|
blockMixCb();
|
|||
|
await (0, utils_js_1.asyncLoop)(N, asyncTick, () => {
|
|||
|
// First u32 of the last 64-byte block (u32 is LE)
|
|||
|
const j = B32[Pi + blockSize32 - 16] % N; // j = Integrify(X) % iterations
|
|||
|
for (let k = 0; k < blockSize32; k++)
|
|||
|
tmp[k] = B32[Pi + k] ^ V[j * blockSize32 + k]; // tmp = B ^ V[j]
|
|||
|
BlockMix(tmp, 0, B32, Pi, r); // B = BlockMix(B ^ V[j])
|
|||
|
blockMixCb();
|
|||
|
});
|
|||
|
}
|
|||
|
if (!utils_js_1.isLE)
|
|||
|
(0, utils_js_1.byteSwap32)(B32);
|
|||
|
return scryptOutput(password, dkLen, B, V, tmp);
|
|||
|
}
|
|||
|
//# sourceMappingURL=scrypt.js.map
|