2025-04-19 15:38:48 +08:00

160 lines
6.9 KiB
JavaScript
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.wNAF = wNAF;
exports.validateBasic = validateBasic;
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
// Abelian group utilities
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
const _0n = BigInt(0);
const _1n = BigInt(1);
// Elliptic curve multiplication of Point by scalar. Fragile.
// Scalars should always be less than curve order: this should be checked inside of a curve itself.
// Creates precomputation tables for fast multiplication:
// - private scalar is split by fixed size windows of W bits
// - every window point is collected from window's table & added to accumulator
// - since windows are different, same point inside tables won't be accessed more than once per calc
// - each multiplication is 'Math.ceil(CURVE_ORDER / 𝑊) + 1' point additions (fixed for any scalar)
// - +1 window is neccessary for wNAF
// - wNAF reduces table size: 2x less memory + 2x faster generation, but 10% slower multiplication
// TODO: Research returning 2d JS array of windows, instead of a single window. This would allow
// windows to be in different memory locations
function wNAF(c, bits) {
const constTimeNegate = (condition, item) => {
const neg = item.negate();
return condition ? neg : item;
};
const opts = (W) => {
const windows = Math.ceil(bits / W) + 1; // +1, because
const windowSize = 2 ** (W - 1); // -1 because we skip zero
return { windows, windowSize };
};
return {
constTimeNegate,
// non-const time multiplication ladder
unsafeLadder(elm, n) {
let p = c.ZERO;
let d = elm;
while (n > _0n) {
if (n & _1n)
p = p.add(d);
d = d.double();
n >>= _1n;
}
return p;
},
/**
* Creates a wNAF precomputation window. Used for caching.
* Default window size is set by `utils.precompute()` and is equal to 8.
* Number of precomputed points depends on the curve size:
* 2^(𝑊1) * (Math.ceil(𝑛 / 𝑊) + 1), where:
* - 𝑊 is the window size
* - 𝑛 is the bitlength of the curve order.
* For a 256-bit curve and window size 8, the number of precomputed points is 128 * 33 = 4224.
* @returns precomputed point tables flattened to a single array
*/
precomputeWindow(elm, W) {
const { windows, windowSize } = opts(W);
const points = [];
let p = elm;
let base = p;
for (let window = 0; window < windows; window++) {
base = p;
points.push(base);
// =1, because we skip zero
for (let i = 1; i < windowSize; i++) {
base = base.add(p);
points.push(base);
}
p = base.double();
}
return points;
},
/**
* Implements ec multiplication using precomputed tables and w-ary non-adjacent form.
* @param W window size
* @param precomputes precomputed tables
* @param n scalar (we don't check here, but should be less than curve order)
* @returns real and fake (for const-time) points
*/
wNAF(W, precomputes, n) {
// TODO: maybe check that scalar is less than group order? wNAF behavious is undefined otherwise
// But need to carefully remove other checks before wNAF. ORDER == bits here
const { windows, windowSize } = opts(W);
let p = c.ZERO;
let f = c.BASE;
const mask = BigInt(2 ** W - 1); // Create mask with W ones: 0b1111 for W=4 etc.
const maxNumber = 2 ** W;
const shiftBy = BigInt(W);
for (let window = 0; window < windows; window++) {
const offset = window * windowSize;
// Extract W bits.
let wbits = Number(n & mask);
// Shift number by W bits.
n >>= shiftBy;
// If the bits are bigger than max size, we'll split those.
// +224 => 256 - 32
if (wbits > windowSize) {
wbits -= maxNumber;
n += _1n;
}
// This code was first written with assumption that 'f' and 'p' will never be infinity point:
// since each addition is multiplied by 2 ** W, it cannot cancel each other. However,
// there is negate now: it is possible that negated element from low value
// would be the same as high element, which will create carry into next window.
// It's not obvious how this can fail, but still worth investigating later.
// Check if we're onto Zero point.
// Add random point inside current window to f.
const offset1 = offset;
const offset2 = offset + Math.abs(wbits) - 1; // -1 because we skip zero
const cond1 = window % 2 !== 0;
const cond2 = wbits < 0;
if (wbits === 0) {
// The most important part for const-time getPublicKey
f = f.add(constTimeNegate(cond1, precomputes[offset1]));
}
else {
p = p.add(constTimeNegate(cond2, precomputes[offset2]));
}
}
// JIT-compiler should not eliminate f here, since it will later be used in normalizeZ()
// Even if the variable is still unused, there are some checks which will
// throw an exception, so compiler needs to prove they won't happen, which is hard.
// At this point there is a way to F be infinity-point even if p is not,
// which makes it less const-time: around 1 bigint multiply.
return { p, f };
},
wNAFCached(P, precomputesMap, n, transform) {
// @ts-ignore
const W = P._WINDOW_SIZE || 1;
// Calculate precomputes on a first run, reuse them after
let comp = precomputesMap.get(P);
if (!comp) {
comp = this.precomputeWindow(P, W);
if (W !== 1) {
precomputesMap.set(P, transform(comp));
}
}
return this.wNAF(W, comp, n);
},
};
}
function validateBasic(curve) {
(0, modular_js_1.validateField)(curve.Fp);
(0, utils_js_1.validateObject)(curve, {
n: 'bigint',
h: 'bigint',
Gx: 'field',
Gy: 'field',
}, {
nBitLength: 'isSafeInteger',
nByteLength: 'isSafeInteger',
});
// Set defaults
return Object.freeze({
...(0, modular_js_1.nLength)(curve.n, curve.nBitLength),
...curve,
...{ p: curve.Fp.ORDER },
});
}
//# sourceMappingURL=curve.js.map