2025-04-19 15:38:48 +08:00

180 lines
7.3 KiB
JavaScript

"use strict";
Object.defineProperty(exports, "__esModule", { value: true });
exports.expand_message_xmd = expand_message_xmd;
exports.expand_message_xof = expand_message_xof;
exports.hash_to_field = hash_to_field;
exports.isogenyMap = isogenyMap;
exports.createHasher = createHasher;
const modular_js_1 = require("./modular.js");
const utils_js_1 = require("./utils.js");
// Octet Stream to Integer. "spec" implementation of os2ip is 2.5x slower vs bytesToNumberBE.
const os2ip = utils_js_1.bytesToNumberBE;
// Integer to Octet Stream (numberToBytesBE)
function i2osp(value, length) {
if (value < 0 || value >= 1 << (8 * length)) {
throw new Error(`bad I2OSP call: value=${value} length=${length}`);
}
const res = Array.from({ length }).fill(0);
for (let i = length - 1; i >= 0; i--) {
res[i] = value & 0xff;
value >>>= 8;
}
return new Uint8Array(res);
}
function strxor(a, b) {
const arr = new Uint8Array(a.length);
for (let i = 0; i < a.length; i++) {
arr[i] = a[i] ^ b[i];
}
return arr;
}
function anum(item) {
if (!Number.isSafeInteger(item))
throw new Error('number expected');
}
// Produces a uniformly random byte string using a cryptographic hash function H that outputs b bits
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.1
function expand_message_xmd(msg, DST, lenInBytes, H) {
(0, utils_js_1.abytes)(msg);
(0, utils_js_1.abytes)(DST);
anum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
if (DST.length > 255)
DST = H((0, utils_js_1.concatBytes)((0, utils_js_1.utf8ToBytes)('H2C-OVERSIZE-DST-'), DST));
const { outputLen: b_in_bytes, blockLen: r_in_bytes } = H;
const ell = Math.ceil(lenInBytes / b_in_bytes);
if (ell > 255)
throw new Error('Invalid xmd length');
const DST_prime = (0, utils_js_1.concatBytes)(DST, i2osp(DST.length, 1));
const Z_pad = i2osp(0, r_in_bytes);
const l_i_b_str = i2osp(lenInBytes, 2); // len_in_bytes_str
const b = new Array(ell);
const b_0 = H((0, utils_js_1.concatBytes)(Z_pad, msg, l_i_b_str, i2osp(0, 1), DST_prime));
b[0] = H((0, utils_js_1.concatBytes)(b_0, i2osp(1, 1), DST_prime));
for (let i = 1; i <= ell; i++) {
const args = [strxor(b_0, b[i - 1]), i2osp(i + 1, 1), DST_prime];
b[i] = H((0, utils_js_1.concatBytes)(...args));
}
const pseudo_random_bytes = (0, utils_js_1.concatBytes)(...b);
return pseudo_random_bytes.slice(0, lenInBytes);
}
// Produces a uniformly random byte string using an extendable-output function (XOF) H.
// 1. The collision resistance of H MUST be at least k bits.
// 2. H MUST be an XOF that has been proved indifferentiable from
// a random oracle under a reasonable cryptographic assumption.
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.2
function expand_message_xof(msg, DST, lenInBytes, k, H) {
(0, utils_js_1.abytes)(msg);
(0, utils_js_1.abytes)(DST);
anum(lenInBytes);
// https://www.rfc-editor.org/rfc/rfc9380#section-5.3.3
// DST = H('H2C-OVERSIZE-DST-' || a_very_long_DST, Math.ceil((lenInBytes * k) / 8));
if (DST.length > 255) {
const dkLen = Math.ceil((2 * k) / 8);
DST = H.create({ dkLen }).update((0, utils_js_1.utf8ToBytes)('H2C-OVERSIZE-DST-')).update(DST).digest();
}
if (lenInBytes > 65535 || DST.length > 255)
throw new Error('expand_message_xof: invalid lenInBytes');
return (H.create({ dkLen: lenInBytes })
.update(msg)
.update(i2osp(lenInBytes, 2))
// 2. DST_prime = DST || I2OSP(len(DST), 1)
.update(DST)
.update(i2osp(DST.length, 1))
.digest());
}
/**
* Hashes arbitrary-length byte strings to a list of one or more elements of a finite field F
* https://www.rfc-editor.org/rfc/rfc9380#section-5.2
* @param msg a byte string containing the message to hash
* @param count the number of elements of F to output
* @param options `{DST: string, p: bigint, m: number, k: number, expand: 'xmd' | 'xof', hash: H}`, see above
* @returns [u_0, ..., u_(count - 1)], a list of field elements.
*/
function hash_to_field(msg, count, options) {
(0, utils_js_1.validateObject)(options, {
DST: 'stringOrUint8Array',
p: 'bigint',
m: 'isSafeInteger',
k: 'isSafeInteger',
hash: 'hash',
});
const { p, k, m, hash, expand, DST: _DST } = options;
(0, utils_js_1.abytes)(msg);
anum(count);
const DST = typeof _DST === 'string' ? (0, utils_js_1.utf8ToBytes)(_DST) : _DST;
const log2p = p.toString(2).length;
const L = Math.ceil((log2p + k) / 8); // section 5.1 of ietf draft link above
const len_in_bytes = count * m * L;
let prb; // pseudo_random_bytes
if (expand === 'xmd') {
prb = expand_message_xmd(msg, DST, len_in_bytes, hash);
}
else if (expand === 'xof') {
prb = expand_message_xof(msg, DST, len_in_bytes, k, hash);
}
else if (expand === '_internal_pass') {
// for internal tests only
prb = msg;
}
else {
throw new Error('expand must be "xmd" or "xof"');
}
const u = new Array(count);
for (let i = 0; i < count; i++) {
const e = new Array(m);
for (let j = 0; j < m; j++) {
const elm_offset = L * (j + i * m);
const tv = prb.subarray(elm_offset, elm_offset + L);
e[j] = (0, modular_js_1.mod)(os2ip(tv), p);
}
u[i] = e;
}
return u;
}
function isogenyMap(field, map) {
// Make same order as in spec
const COEFF = map.map((i) => Array.from(i).reverse());
return (x, y) => {
const [xNum, xDen, yNum, yDen] = COEFF.map((val) => val.reduce((acc, i) => field.add(field.mul(acc, x), i)));
x = field.div(xNum, xDen); // xNum / xDen
y = field.mul(y, field.div(yNum, yDen)); // y * (yNum / yDev)
return { x, y };
};
}
function createHasher(Point, mapToCurve, def) {
if (typeof mapToCurve !== 'function')
throw new Error('mapToCurve() must be defined');
return {
// Encodes byte string to elliptic curve.
// hash_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
hashToCurve(msg, options) {
const u = hash_to_field(msg, 2, { ...def, DST: def.DST, ...options });
const u0 = Point.fromAffine(mapToCurve(u[0]));
const u1 = Point.fromAffine(mapToCurve(u[1]));
const P = u0.add(u1).clearCofactor();
P.assertValidity();
return P;
},
// Encodes byte string to elliptic curve.
// encode_to_curve from https://www.rfc-editor.org/rfc/rfc9380#section-3
encodeToCurve(msg, options) {
const u = hash_to_field(msg, 1, { ...def, DST: def.encodeDST, ...options });
const P = Point.fromAffine(mapToCurve(u[0])).clearCofactor();
P.assertValidity();
return P;
},
// Same as encodeToCurve, but without hash
mapToCurve(scalars) {
if (!Array.isArray(scalars))
throw new Error('mapToCurve: expected array of bigints');
for (const i of scalars)
if (typeof i !== 'bigint')
throw new Error(`mapToCurve: expected array of bigints, got ${i} in array`);
const P = Point.fromAffine(mapToCurve(scalars)).clearCofactor();
P.assertValidity();
return P;
},
};
}
//# sourceMappingURL=hash-to-curve.js.map