439 lines
17 KiB
JavaScript
439 lines
17 KiB
JavaScript
"use strict";
|
|
Object.defineProperty(exports, "__esModule", { value: true });
|
|
exports.isNegativeLE = void 0;
|
|
exports.mod = mod;
|
|
exports.pow = pow;
|
|
exports.pow2 = pow2;
|
|
exports.invert = invert;
|
|
exports.tonelliShanks = tonelliShanks;
|
|
exports.FpSqrt = FpSqrt;
|
|
exports.validateField = validateField;
|
|
exports.FpPow = FpPow;
|
|
exports.FpInvertBatch = FpInvertBatch;
|
|
exports.FpDiv = FpDiv;
|
|
exports.FpIsSquare = FpIsSquare;
|
|
exports.nLength = nLength;
|
|
exports.Field = Field;
|
|
exports.FpSqrtOdd = FpSqrtOdd;
|
|
exports.FpSqrtEven = FpSqrtEven;
|
|
exports.hashToPrivateScalar = hashToPrivateScalar;
|
|
exports.getFieldBytesLength = getFieldBytesLength;
|
|
exports.getMinHashLength = getMinHashLength;
|
|
exports.mapHashToField = mapHashToField;
|
|
/*! noble-curves - MIT License (c) 2022 Paul Miller (paulmillr.com) */
|
|
// Utilities for modular arithmetics and finite fields
|
|
const utils_js_1 = require("./utils.js");
|
|
// prettier-ignore
|
|
const _0n = BigInt(0), _1n = BigInt(1), _2n = BigInt(2), _3n = BigInt(3);
|
|
// prettier-ignore
|
|
const _4n = BigInt(4), _5n = BigInt(5), _8n = BigInt(8);
|
|
// prettier-ignore
|
|
const _9n = BigInt(9), _16n = BigInt(16);
|
|
// Calculates a modulo b
|
|
function mod(a, b) {
|
|
const result = a % b;
|
|
return result >= _0n ? result : b + result;
|
|
}
|
|
/**
|
|
* Efficiently raise num to power and do modular division.
|
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
|
|
* @example
|
|
* pow(2n, 6n, 11n) // 64n % 11n == 9n
|
|
*/
|
|
// TODO: use field version && remove
|
|
function pow(num, power, modulo) {
|
|
if (modulo <= _0n || power < _0n)
|
|
throw new Error('Expected power/modulo > 0');
|
|
if (modulo === _1n)
|
|
return _0n;
|
|
let res = _1n;
|
|
while (power > _0n) {
|
|
if (power & _1n)
|
|
res = (res * num) % modulo;
|
|
num = (num * num) % modulo;
|
|
power >>= _1n;
|
|
}
|
|
return res;
|
|
}
|
|
// Does x ^ (2 ^ power) mod p. pow2(30, 4) == 30 ^ (2 ^ 4)
|
|
function pow2(x, power, modulo) {
|
|
let res = x;
|
|
while (power-- > _0n) {
|
|
res *= res;
|
|
res %= modulo;
|
|
}
|
|
return res;
|
|
}
|
|
// Inverses number over modulo
|
|
function invert(number, modulo) {
|
|
if (number === _0n || modulo <= _0n) {
|
|
throw new Error(`invert: expected positive integers, got n=${number} mod=${modulo}`);
|
|
}
|
|
// Euclidean GCD https://brilliant.org/wiki/extended-euclidean-algorithm/
|
|
// Fermat's little theorem "CT-like" version inv(n) = n^(m-2) mod m is 30x slower.
|
|
let a = mod(number, modulo);
|
|
let b = modulo;
|
|
// prettier-ignore
|
|
let x = _0n, y = _1n, u = _1n, v = _0n;
|
|
while (a !== _0n) {
|
|
// JIT applies optimization if those two lines follow each other
|
|
const q = b / a;
|
|
const r = b % a;
|
|
const m = x - u * q;
|
|
const n = y - v * q;
|
|
// prettier-ignore
|
|
b = a, a = r, x = u, y = v, u = m, v = n;
|
|
}
|
|
const gcd = b;
|
|
if (gcd !== _1n)
|
|
throw new Error('invert: does not exist');
|
|
return mod(x, modulo);
|
|
}
|
|
/**
|
|
* Tonelli-Shanks square root search algorithm.
|
|
* 1. https://eprint.iacr.org/2012/685.pdf (page 12)
|
|
* 2. Square Roots from 1; 24, 51, 10 to Dan Shanks
|
|
* Will start an infinite loop if field order P is not prime.
|
|
* @param P field order
|
|
* @returns function that takes field Fp (created from P) and number n
|
|
*/
|
|
function tonelliShanks(P) {
|
|
// Legendre constant: used to calculate Legendre symbol (a | p),
|
|
// which denotes the value of a^((p-1)/2) (mod p).
|
|
// (a | p) ≡ 1 if a is a square (mod p)
|
|
// (a | p) ≡ -1 if a is not a square (mod p)
|
|
// (a | p) ≡ 0 if a ≡ 0 (mod p)
|
|
const legendreC = (P - _1n) / _2n;
|
|
let Q, S, Z;
|
|
// Step 1: By factoring out powers of 2 from p - 1,
|
|
// find q and s such that p - 1 = q*(2^s) with q odd
|
|
for (Q = P - _1n, S = 0; Q % _2n === _0n; Q /= _2n, S++)
|
|
;
|
|
// Step 2: Select a non-square z such that (z | p) ≡ -1 and set c ≡ zq
|
|
for (Z = _2n; Z < P && pow(Z, legendreC, P) !== P - _1n; Z++)
|
|
;
|
|
// Fast-path
|
|
if (S === 1) {
|
|
const p1div4 = (P + _1n) / _4n;
|
|
return function tonelliFast(Fp, n) {
|
|
const root = Fp.pow(n, p1div4);
|
|
if (!Fp.eql(Fp.sqr(root), n))
|
|
throw new Error('Cannot find square root');
|
|
return root;
|
|
};
|
|
}
|
|
// Slow-path
|
|
const Q1div2 = (Q + _1n) / _2n;
|
|
return function tonelliSlow(Fp, n) {
|
|
// Step 0: Check that n is indeed a square: (n | p) should not be ≡ -1
|
|
if (Fp.pow(n, legendreC) === Fp.neg(Fp.ONE))
|
|
throw new Error('Cannot find square root');
|
|
let r = S;
|
|
// TODO: will fail at Fp2/etc
|
|
let g = Fp.pow(Fp.mul(Fp.ONE, Z), Q); // will update both x and b
|
|
let x = Fp.pow(n, Q1div2); // first guess at the square root
|
|
let b = Fp.pow(n, Q); // first guess at the fudge factor
|
|
while (!Fp.eql(b, Fp.ONE)) {
|
|
if (Fp.eql(b, Fp.ZERO))
|
|
return Fp.ZERO; // https://en.wikipedia.org/wiki/Tonelli%E2%80%93Shanks_algorithm (4. If t = 0, return r = 0)
|
|
// Find m such b^(2^m)==1
|
|
let m = 1;
|
|
for (let t2 = Fp.sqr(b); m < r; m++) {
|
|
if (Fp.eql(t2, Fp.ONE))
|
|
break;
|
|
t2 = Fp.sqr(t2); // t2 *= t2
|
|
}
|
|
// NOTE: r-m-1 can be bigger than 32, need to convert to bigint before shift, otherwise there will be overflow
|
|
const ge = Fp.pow(g, _1n << BigInt(r - m - 1)); // ge = 2^(r-m-1)
|
|
g = Fp.sqr(ge); // g = ge * ge
|
|
x = Fp.mul(x, ge); // x *= ge
|
|
b = Fp.mul(b, g); // b *= g
|
|
r = m;
|
|
}
|
|
return x;
|
|
};
|
|
}
|
|
function FpSqrt(P) {
|
|
// NOTE: different algorithms can give different roots, it is up to user to decide which one they want.
|
|
// For example there is FpSqrtOdd/FpSqrtEven to choice root based on oddness (used for hash-to-curve).
|
|
// P ≡ 3 (mod 4)
|
|
// √n = n^((P+1)/4)
|
|
if (P % _4n === _3n) {
|
|
// Not all roots possible!
|
|
// const ORDER =
|
|
// 0x1a0111ea397fe69a4b1ba7b6434bacd764774b84f38512bf6730d2a0f6b0f6241eabfffeb153ffffb9feffffffffaaabn;
|
|
// const NUM = 72057594037927816n;
|
|
const p1div4 = (P + _1n) / _4n;
|
|
return function sqrt3mod4(Fp, n) {
|
|
const root = Fp.pow(n, p1div4);
|
|
// Throw if root**2 != n
|
|
if (!Fp.eql(Fp.sqr(root), n))
|
|
throw new Error('Cannot find square root');
|
|
return root;
|
|
};
|
|
}
|
|
// Atkin algorithm for q ≡ 5 (mod 8), https://eprint.iacr.org/2012/685.pdf (page 10)
|
|
if (P % _8n === _5n) {
|
|
const c1 = (P - _5n) / _8n;
|
|
return function sqrt5mod8(Fp, n) {
|
|
const n2 = Fp.mul(n, _2n);
|
|
const v = Fp.pow(n2, c1);
|
|
const nv = Fp.mul(n, v);
|
|
const i = Fp.mul(Fp.mul(nv, _2n), v);
|
|
const root = Fp.mul(nv, Fp.sub(i, Fp.ONE));
|
|
if (!Fp.eql(Fp.sqr(root), n))
|
|
throw new Error('Cannot find square root');
|
|
return root;
|
|
};
|
|
}
|
|
// P ≡ 9 (mod 16)
|
|
if (P % _16n === _9n) {
|
|
// NOTE: tonelli is too slow for bls-Fp2 calculations even on start
|
|
// Means we cannot use sqrt for constants at all!
|
|
//
|
|
// const c1 = Fp.sqrt(Fp.negate(Fp.ONE)); // 1. c1 = sqrt(-1) in F, i.e., (c1^2) == -1 in F
|
|
// const c2 = Fp.sqrt(c1); // 2. c2 = sqrt(c1) in F, i.e., (c2^2) == c1 in F
|
|
// const c3 = Fp.sqrt(Fp.negate(c1)); // 3. c3 = sqrt(-c1) in F, i.e., (c3^2) == -c1 in F
|
|
// const c4 = (P + _7n) / _16n; // 4. c4 = (q + 7) / 16 # Integer arithmetic
|
|
// sqrt = (x) => {
|
|
// let tv1 = Fp.pow(x, c4); // 1. tv1 = x^c4
|
|
// let tv2 = Fp.mul(c1, tv1); // 2. tv2 = c1 * tv1
|
|
// const tv3 = Fp.mul(c2, tv1); // 3. tv3 = c2 * tv1
|
|
// let tv4 = Fp.mul(c3, tv1); // 4. tv4 = c3 * tv1
|
|
// const e1 = Fp.equals(Fp.square(tv2), x); // 5. e1 = (tv2^2) == x
|
|
// const e2 = Fp.equals(Fp.square(tv3), x); // 6. e2 = (tv3^2) == x
|
|
// tv1 = Fp.cmov(tv1, tv2, e1); // 7. tv1 = CMOV(tv1, tv2, e1) # Select tv2 if (tv2^2) == x
|
|
// tv2 = Fp.cmov(tv4, tv3, e2); // 8. tv2 = CMOV(tv4, tv3, e2) # Select tv3 if (tv3^2) == x
|
|
// const e3 = Fp.equals(Fp.square(tv2), x); // 9. e3 = (tv2^2) == x
|
|
// return Fp.cmov(tv1, tv2, e3); // 10. z = CMOV(tv1, tv2, e3) # Select the sqrt from tv1 and tv2
|
|
// }
|
|
}
|
|
// Other cases: Tonelli-Shanks algorithm
|
|
return tonelliShanks(P);
|
|
}
|
|
// Little-endian check for first LE bit (last BE bit);
|
|
const isNegativeLE = (num, modulo) => (mod(num, modulo) & _1n) === _1n;
|
|
exports.isNegativeLE = isNegativeLE;
|
|
// prettier-ignore
|
|
const FIELD_FIELDS = [
|
|
'create', 'isValid', 'is0', 'neg', 'inv', 'sqrt', 'sqr',
|
|
'eql', 'add', 'sub', 'mul', 'pow', 'div',
|
|
'addN', 'subN', 'mulN', 'sqrN'
|
|
];
|
|
function validateField(field) {
|
|
const initial = {
|
|
ORDER: 'bigint',
|
|
MASK: 'bigint',
|
|
BYTES: 'isSafeInteger',
|
|
BITS: 'isSafeInteger',
|
|
};
|
|
const opts = FIELD_FIELDS.reduce((map, val) => {
|
|
map[val] = 'function';
|
|
return map;
|
|
}, initial);
|
|
return (0, utils_js_1.validateObject)(field, opts);
|
|
}
|
|
// Generic field functions
|
|
/**
|
|
* Same as `pow` but for Fp: non-constant-time.
|
|
* Unsafe in some contexts: uses ladder, so can expose bigint bits.
|
|
*/
|
|
function FpPow(f, num, power) {
|
|
// Should have same speed as pow for bigints
|
|
// TODO: benchmark!
|
|
if (power < _0n)
|
|
throw new Error('Expected power > 0');
|
|
if (power === _0n)
|
|
return f.ONE;
|
|
if (power === _1n)
|
|
return num;
|
|
let p = f.ONE;
|
|
let d = num;
|
|
while (power > _0n) {
|
|
if (power & _1n)
|
|
p = f.mul(p, d);
|
|
d = f.sqr(d);
|
|
power >>= _1n;
|
|
}
|
|
return p;
|
|
}
|
|
/**
|
|
* Efficiently invert an array of Field elements.
|
|
* `inv(0)` will return `undefined` here: make sure to throw an error.
|
|
*/
|
|
function FpInvertBatch(f, nums) {
|
|
const tmp = new Array(nums.length);
|
|
// Walk from first to last, multiply them by each other MOD p
|
|
const lastMultiplied = nums.reduce((acc, num, i) => {
|
|
if (f.is0(num))
|
|
return acc;
|
|
tmp[i] = acc;
|
|
return f.mul(acc, num);
|
|
}, f.ONE);
|
|
// Invert last element
|
|
const inverted = f.inv(lastMultiplied);
|
|
// Walk from last to first, multiply them by inverted each other MOD p
|
|
nums.reduceRight((acc, num, i) => {
|
|
if (f.is0(num))
|
|
return acc;
|
|
tmp[i] = f.mul(acc, tmp[i]);
|
|
return f.mul(acc, num);
|
|
}, inverted);
|
|
return tmp;
|
|
}
|
|
function FpDiv(f, lhs, rhs) {
|
|
return f.mul(lhs, typeof rhs === 'bigint' ? invert(rhs, f.ORDER) : f.inv(rhs));
|
|
}
|
|
// This function returns True whenever the value x is a square in the field F.
|
|
function FpIsSquare(f) {
|
|
const legendreConst = (f.ORDER - _1n) / _2n; // Integer arithmetic
|
|
return (x) => {
|
|
const p = f.pow(x, legendreConst);
|
|
return f.eql(p, f.ZERO) || f.eql(p, f.ONE);
|
|
};
|
|
}
|
|
// CURVE.n lengths
|
|
function nLength(n, nBitLength) {
|
|
// Bit size, byte size of CURVE.n
|
|
const _nBitLength = nBitLength !== undefined ? nBitLength : n.toString(2).length;
|
|
const nByteLength = Math.ceil(_nBitLength / 8);
|
|
return { nBitLength: _nBitLength, nByteLength };
|
|
}
|
|
/**
|
|
* Initializes a finite field over prime. **Non-primes are not supported.**
|
|
* Do not init in loop: slow. Very fragile: always run a benchmark on a change.
|
|
* Major performance optimizations:
|
|
* * a) denormalized operations like mulN instead of mul
|
|
* * b) same object shape: never add or remove keys
|
|
* * c) Object.freeze
|
|
* @param ORDER prime positive bigint
|
|
* @param bitLen how many bits the field consumes
|
|
* @param isLE (def: false) if encoding / decoding should be in little-endian
|
|
* @param redef optional faster redefinitions of sqrt and other methods
|
|
*/
|
|
function Field(ORDER, bitLen, isLE = false, redef = {}) {
|
|
if (ORDER <= _0n)
|
|
throw new Error(`Expected Field ORDER > 0, got ${ORDER}`);
|
|
const { nBitLength: BITS, nByteLength: BYTES } = nLength(ORDER, bitLen);
|
|
if (BYTES > 2048)
|
|
throw new Error('Field lengths over 2048 bytes are not supported');
|
|
const sqrtP = FpSqrt(ORDER);
|
|
const f = Object.freeze({
|
|
ORDER,
|
|
BITS,
|
|
BYTES,
|
|
MASK: (0, utils_js_1.bitMask)(BITS),
|
|
ZERO: _0n,
|
|
ONE: _1n,
|
|
create: (num) => mod(num, ORDER),
|
|
isValid: (num) => {
|
|
if (typeof num !== 'bigint')
|
|
throw new Error(`Invalid field element: expected bigint, got ${typeof num}`);
|
|
return _0n <= num && num < ORDER; // 0 is valid element, but it's not invertible
|
|
},
|
|
is0: (num) => num === _0n,
|
|
isOdd: (num) => (num & _1n) === _1n,
|
|
neg: (num) => mod(-num, ORDER),
|
|
eql: (lhs, rhs) => lhs === rhs,
|
|
sqr: (num) => mod(num * num, ORDER),
|
|
add: (lhs, rhs) => mod(lhs + rhs, ORDER),
|
|
sub: (lhs, rhs) => mod(lhs - rhs, ORDER),
|
|
mul: (lhs, rhs) => mod(lhs * rhs, ORDER),
|
|
pow: (num, power) => FpPow(f, num, power),
|
|
div: (lhs, rhs) => mod(lhs * invert(rhs, ORDER), ORDER),
|
|
// Same as above, but doesn't normalize
|
|
sqrN: (num) => num * num,
|
|
addN: (lhs, rhs) => lhs + rhs,
|
|
subN: (lhs, rhs) => lhs - rhs,
|
|
mulN: (lhs, rhs) => lhs * rhs,
|
|
inv: (num) => invert(num, ORDER),
|
|
sqrt: redef.sqrt || ((n) => sqrtP(f, n)),
|
|
invertBatch: (lst) => FpInvertBatch(f, lst),
|
|
// TODO: do we really need constant cmov?
|
|
// We don't have const-time bigints anyway, so probably will be not very useful
|
|
cmov: (a, b, c) => (c ? b : a),
|
|
toBytes: (num) => (isLE ? (0, utils_js_1.numberToBytesLE)(num, BYTES) : (0, utils_js_1.numberToBytesBE)(num, BYTES)),
|
|
fromBytes: (bytes) => {
|
|
if (bytes.length !== BYTES)
|
|
throw new Error(`Fp.fromBytes: expected ${BYTES}, got ${bytes.length}`);
|
|
return isLE ? (0, utils_js_1.bytesToNumberLE)(bytes) : (0, utils_js_1.bytesToNumberBE)(bytes);
|
|
},
|
|
});
|
|
return Object.freeze(f);
|
|
}
|
|
function FpSqrtOdd(Fp, elm) {
|
|
if (!Fp.isOdd)
|
|
throw new Error(`Field doesn't have isOdd`);
|
|
const root = Fp.sqrt(elm);
|
|
return Fp.isOdd(root) ? root : Fp.neg(root);
|
|
}
|
|
function FpSqrtEven(Fp, elm) {
|
|
if (!Fp.isOdd)
|
|
throw new Error(`Field doesn't have isOdd`);
|
|
const root = Fp.sqrt(elm);
|
|
return Fp.isOdd(root) ? Fp.neg(root) : root;
|
|
}
|
|
/**
|
|
* "Constant-time" private key generation utility.
|
|
* Same as mapKeyToField, but accepts less bytes (40 instead of 48 for 32-byte field).
|
|
* Which makes it slightly more biased, less secure.
|
|
* @deprecated use mapKeyToField instead
|
|
*/
|
|
function hashToPrivateScalar(hash, groupOrder, isLE = false) {
|
|
hash = (0, utils_js_1.ensureBytes)('privateHash', hash);
|
|
const hashLen = hash.length;
|
|
const minLen = nLength(groupOrder).nByteLength + 8;
|
|
if (minLen < 24 || hashLen < minLen || hashLen > 1024)
|
|
throw new Error(`hashToPrivateScalar: expected ${minLen}-1024 bytes of input, got ${hashLen}`);
|
|
const num = isLE ? (0, utils_js_1.bytesToNumberLE)(hash) : (0, utils_js_1.bytesToNumberBE)(hash);
|
|
return mod(num, groupOrder - _1n) + _1n;
|
|
}
|
|
/**
|
|
* Returns total number of bytes consumed by the field element.
|
|
* For example, 32 bytes for usual 256-bit weierstrass curve.
|
|
* @param fieldOrder number of field elements, usually CURVE.n
|
|
* @returns byte length of field
|
|
*/
|
|
function getFieldBytesLength(fieldOrder) {
|
|
if (typeof fieldOrder !== 'bigint')
|
|
throw new Error('field order must be bigint');
|
|
const bitLength = fieldOrder.toString(2).length;
|
|
return Math.ceil(bitLength / 8);
|
|
}
|
|
/**
|
|
* Returns minimal amount of bytes that can be safely reduced
|
|
* by field order.
|
|
* Should be 2^-128 for 128-bit curve such as P256.
|
|
* @param fieldOrder number of field elements, usually CURVE.n
|
|
* @returns byte length of target hash
|
|
*/
|
|
function getMinHashLength(fieldOrder) {
|
|
const length = getFieldBytesLength(fieldOrder);
|
|
return length + Math.ceil(length / 2);
|
|
}
|
|
/**
|
|
* "Constant-time" private key generation utility.
|
|
* Can take (n + n/2) or more bytes of uniform input e.g. from CSPRNG or KDF
|
|
* and convert them into private scalar, with the modulo bias being negligible.
|
|
* Needs at least 48 bytes of input for 32-byte private key.
|
|
* https://research.kudelskisecurity.com/2020/07/28/the-definitive-guide-to-modulo-bias-and-how-to-avoid-it/
|
|
* FIPS 186-5, A.2 https://csrc.nist.gov/publications/detail/fips/186/5/final
|
|
* RFC 9380, https://www.rfc-editor.org/rfc/rfc9380#section-5
|
|
* @param hash hash output from SHA3 or a similar function
|
|
* @param groupOrder size of subgroup - (e.g. secp256k1.CURVE.n)
|
|
* @param isLE interpret hash bytes as LE num
|
|
* @returns valid private scalar
|
|
*/
|
|
function mapHashToField(key, fieldOrder, isLE = false) {
|
|
const len = key.length;
|
|
const fieldLen = getFieldBytesLength(fieldOrder);
|
|
const minLen = getMinHashLength(fieldOrder);
|
|
// No small numbers: need to understand bias story. No huge numbers: easier to detect JS timings.
|
|
if (len < 16 || len < minLen || len > 1024)
|
|
throw new Error(`expected ${minLen}-1024 bytes of input, got ${len}`);
|
|
const num = isLE ? (0, utils_js_1.bytesToNumberBE)(key) : (0, utils_js_1.bytesToNumberLE)(key);
|
|
// `mod(x, 11)` can sometimes produce 0. `mod(x, 10) + 1` is the same, but no 0
|
|
const reduced = mod(num, fieldOrder - _1n) + _1n;
|
|
return isLE ? (0, utils_js_1.numberToBytesLE)(reduced, fieldLen) : (0, utils_js_1.numberToBytesBE)(reduced, fieldLen);
|
|
}
|
|
//# sourceMappingURL=modular.js.map
|